
- Teacher: Khalissa ARIANE
- Teacher: SABIRA MOUHOUBI
- Teacher: DOUNIA ALIHELLAL
- Teacher: LOUBNA MENTAR
This introductory physics module lays the foundation for understanding fundamental physical principles and developing problem-solving skills. The course covers classical mechanics, which includes topics such as:
Kinematics: The study of motion in one and two dimensions, including concepts of velocity, acceleration, and displacement.
Newton's Laws of Motion: Understanding the relationship between forces and the motion of objects.
Work and Energy: Concepts of kinetic and potential energy, work-energy theorems, and the conservation of energy.
Momentum and Collisions: Linear momentum, impulse, and the conservation of momentum in elastic and inelastic collisions.
Rotational Motion: Angular velocity, angular acceleration, and the dynamics of rotating bodies.
Gravitation: Newton's law of universal gravitation and applications to planetary motion.
Throughout the course, emphasis is placed on problem-solving strategies, mathematical modeling, and experimental verification of physical concepts. By the end of the module, students will have a solid understanding of basic mechanics and be prepared to apply these concepts in more advanced physics topics.
Assessment Methods:
Problem sets
Laboratory experiments
Midterm and final exams
Kinematics: The study of motion in one and two dimensions, including concepts of velocity, acceleration, and displacement.
Newton's Laws of Motion: Understanding the relationship between forces and the motion of objects.
Work and Energy: Concepts of kinetic and potential energy, work-energy theorems, and the conservation of energy.
Momentum and Collisions: Linear momentum, impulse, and the conservation of momentum in elastic and inelastic collisions.
Rotational Motion: Angular velocity, angular acceleration, and the dynamics of rotating bodies.
Gravitation: Newton's law of universal gravitation and applications to planetary motion.
Throughout the course, emphasis is placed on problem-solving strategies, mathematical modeling, and experimental verification of physical concepts. By the end of the module, students will have a solid understanding of basic mechanics and be prepared to apply these concepts in more advanced physics topics.
Assessment Methods:
Problem sets
Laboratory experiments
Midterm and final exams
- Teacher: Nouari Rouag